
Norm-Attaining Operators

P. Sam Johnson

February 19, 2020

P. Sam Johnson Norm-Attaining Operators 1/39



Notations

Before we start, let us see the notations first.

K the field of real or complex scalars
`1 the set of absolutely summable sequences
`2 the set of square summable sequences
`∞ the set of bounded sequences
c0 the set of convergent sequences coverging to 0
BX the closed unit ball in X
SX the unit sphere in X

M the closure of M
X ∗ the dual of X
T ∗ the adjoint of T
‖T‖ a norm of the operator T

B(X ,Y ) the space of bounded linear operators from X into Y
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Outline of the talk

The theory of norm-attaining operators is a very recent field of research, as
it appeared in the second half of the 20th Century, and it is also very
active nowadays, since many authors contribute to this field with their
research now.

In spite of its short life, the work in the theory of norm-attaining operators
has been very fruitful, and there exist many important results related to
this field.

We shall discuss the following in the lecture.

Norm-attaining functionals in X ∗.

Non-norm-attaining functionals in X ∗.

Norm-attaining operators.

Operators that attain their minima.
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Introduction

Let X and Y be normed spaces and let T ∈ B(X ,Y ).

The operator norm is given by

‖T‖ = sup
‖x‖≤1

‖Tx‖ = sup
‖x‖=1

‖Tx‖.

Definition 1.

Let T ∈ B(X ,Y ). The operator T is said to be norm-attaining if there
exists x0 ∈ SX such that

‖Tx0‖ = ‖T‖.

We denote the set of all norm-attaining operators from X to Y by
NA(X ,Y ) and NA(X ,X ) = NA(X ). We shall see that NA(X ,Y ) is not a
subspace of B(X ,Y ) in general.

Problem of density : When is NA(X ,Y ) = B(X ,Y )?
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Introduction

The problem of density of norm-attaining operators involves two spaces,
the spaces of the domain and codomain of the operators under study.

The problem has its origin in an important result of the theory of Banach
spaces, the Bishop-Phelps Subreflexivity Theorem.

Although it appeared just half a century ago (more specifically, in 1961), it
is considered a classical result of Functional Analysis. This theorem
states that every Banach space is subreflexive (that is, the set of
norm-attaining operators in X ∗ = B(X ,K) for a Banach space X is dense
in the dual space X ∗). Proof will not be discussed in the lecture.

This result appeared in 1961, although it was improved in 1963 by the
same authors, with a generalization involving support functionals. In 1970,
B. Bollobas made some quantitative changes to this result, obtaining what
we know nowadays as the Bishop-Phelps-Bollobas Theorem.
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Introduction

In the light of the Bishop-Phelps subreflexivity theorem, Bishop and Phelps
posed the following question in the research paper (appeared in 1961) :

First Question : What conditions on two Banach spaces X and Y
assure that the collection NA(X ,Y ) of norm-attaining operators is
dense in B(X ,Y )?

There must be some additional conditions imposed on at least one of the
spaces; in particular, in a 1963, paper Joram Lindenstrauss showed a
counterexample that there is a Banach space X such that the set NA(X )
of norm-attaining operators is not dense in B(X ). Many other
counterexamples have been developed later.
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Introduction

The seminal paper of Lindenstrauss constitutes one of the biggest
contributions to this field of research. He did not only show that the
expression NA(X ,Y ) 6= B(X ,Y ) in general, but also gave a slightly
weaker affirmation which holds for every Banach spaces X and Y .

Joram Lindenstrauss, 1975-2012
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Introduction

Since Bishop and Phelps showed that the norm-attaining operators are
dense in B(X ,Y ) for every Banach space X and Y = K, it is
particularly natural to ask the following question :

Second Question : What conditions on a Banach space Y would
assure that the norm-attaining operators are dense in B(X ,Y ) for
every Banach space X .

V. Zizler in 1973 proved that the expression NA(X ,Y ) = B(X ,Y ) is true
when X is a reflexive space and Y is an arbitrary Banach space.

Thus reflexive spaces are positive examples for the problem of the
density.
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Introduction

One of the reasons of the importance of the problem of density of
norm-attaining operators is its intimate conection with another important
subject in Banach spaces, the Radon-Nikodym property (RNP).

In fact, the study of norm-attaining operators provides certain familiarity
with the geometric aspects of the RNP, like the dentability.
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Norm-attaining Functionals

Let X be a normed space and f ∈ X ∗. Then, we define the norm of f by

‖f ‖ = sup{|f (x)| : x ∈ BX}.

Definition 1.

We say that a bounded linear functional f attains its norm when the
supremum in the previous definition of norm is a maximum, i.e., if there
exists x0 ∈ BX such that

‖f ‖ = |f (x0)|.
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Norm-attaining Functionals

Let us see some examples of norm-attaining functionals in `∗1 and c∗0 ,
respectively.

Example 2.

Consider the functional f : `1 → K defined by

x = {xn} 7→
∞∑
n=1

xn
n
.

Then f is a bounded linear functional and attains its norm.

Example 3.

Consider the functional g : c0 → K defined by

x = {xn} 7→ x1 + x2.

Then g is a bounded linear functional and attains its norm.
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Norm-attaining Functionals

We want to study the existence of this kind of functionals for every
Banach space X . As a consequence of Hahn-Banach theorem, we have the
following corollary :

Corollary 4.

For every x ∈ X , there exists f ∈ X ∗ verifying ‖f ‖ = 1 and f (x) = ‖x‖.

Using this corollary in the particular case of the unit sphere, we get that
for every x0 ∈ SX there exists f ∈ X ∗ with ‖f ‖ = 1 and f (x0) = ‖x0‖ = 1.

Consequently, for every Banach space, there exist functionals which
attain their norm.
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Norm-attaining Functionals

Let X be a Banach space.

How many functionals in X attain their norm?

Bishop-Phelps subreflexivity theorem shows that for every Banach space X
the set of norm-attaining functionals is quite big, it is dense in the set of
bounded linear functionals. That is, NA(X ,K) = X ∗.

Does there exist a Banach space where every functional attains its
norm?

Before answering the question, we now see examples that there are
Banach spaces which contain some non-norm-attaining functionals.
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Non-Norm-attaining Functionals

Example 5.

Consider the functional f : `1 → K defined by

x = {xn} 7→
∞∑
n=1

(
1− 1

n

)
xn.

Then f is a bounded linear functional but does not attain its norm.
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Non-Norm-attaining Functionals

Example 6.

Consider the functional g : c0 → K defined by

x = {xn} 7→
∞∑
n=1

2−n+1xn.

Then g is a bounded linear functional but does not attain its norm.
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Norm-attaining Functionals

There exists a certain class of spaces, the reflexive spaces, such that
every bounded linear functional in these spaces attains its norm. That is, if
X is reflexive, then NA(X ,K) = X ∗.

Moreover, this fact is a characterization of reflexivity. This result is the
James Theorem and constitutes another classical result of Functional
Analysis.

Theorem 7 (James Theorem).

A Banach space X is reflexive if and only if every continuous linear
functional on X attains its maximum on the closed unit ball in X .

Proof will not be discussed in the lecture.

We have seen some examples of non-norm-attaining functionals. We used
before, `1 and c0 (we chose these spaces as they are some of the
most-known classical Banach spaces and are not reflexive).
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Reflexive Spaces

We say that a Banach space is reflexive if it coincides with its bidual
space. More specifically, if we denote the dual space of X by X ∗, and the
bidual space by X ∗∗, and consider for every x ∈ X the function
J(x) : X ∗ → K given by

J(x)(f ) = f (x) f ∈ X ∗,

then J(x) ∈ X ∗∗, so we obtain a map J : X → X ∗∗ called the evaluation
map. From the Hahn- Banach theorem, J is injective and preserves norms.

A Banach space is reflexive when its evaluation map is surjective.

We have seen that, for every Banach space, there exist norm-attaining
functionals, and that for some spaces, reflexive spaces, every functional
attains its norm.
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Norm-attaining operators defined on finite dimensional
spaces

Let X and Y be normed spaces, dim(X ) <∞ and let T ∈ B(X ,Y ). The
operator norm is given by

‖T‖ = sup
‖x‖≤1

‖Tx‖ = sup
‖x‖=1

‖Tx‖.

It is well-known that if X has finite dimension, then the closed unit ball in
X is compact (Heine-Borel Theorem) and the above “supremum” is a
maximum. That is, if dim(X ) <∞, there exists x0 ∈ BX such that

‖T‖ = ‖Tx0‖.

Theorem 8.

Let X and Y be normed spaces and dim(X ) <∞. Then
NA(X ,Y ) = B(X ,Y ).
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Norm-attaining operators

We saw that for every Banach space there exist norm-attaining functionals
in its dual space, as a consequence of the Hahn-Banach theorem. This
result can be considered the first natural example of norm-attaining
operators. However, as the Hahn-Banach theorem is only valid with the
field as the codomain, it is clear that we cannot use it now to guarantee
the existence of norm-attaining operators.

In fact, it remains an open question if for every X and Y Banach spaces
there exists a norm-attaining operator from X to Y (a non semi-trivial
one). However, we can study the density of the set of norm-attaining
operators in B(X ,Y ).
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Norm-attaining operators

Before studying the density of these operators, we can show some examples
of specific operators which attain their norm and others that do not.

For the first example, we want to show an operator that does not attain
its maximum in the unit ball.

Example 9.

We consider c = {cn} ∈ `∞ such that |cn| < sup |cn| (for example, take cn
positive and growing to 1) and the operator T : `2 → `2 given by

T (x) = cx = {cn xn}, for all x = {xn} ∈ `2.

The operator T is bounded but it does not attain its norm.
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Norm-attaining operators

In the following example, we will study the Fourier coefficients associated
to a function.

Example 10.

Define T : L1(T)→ c0 by

T (f ) = {f̃ (n)}

where {f̃ (n)} is the sequence of Fourier coefficients associated to
f ∈ L1(T). Here ‖T‖ = 1 and T attains its norm.
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Norm-attaining operators on Hilbert spaces

Let H and K be Hilbert spaces. We denote the set of all norm-attaining
operators from H to K by NA(H,K ) and NA(H,H) = NA(H).

We have seen that if dim(H) <∞, then any T ∈ B(H,K ) is
norm-attaining.

Although, in infinite dimension space this important property is lost, albeit
it remains for the compact operators.

Theorem 11.

Every compact operator is norm-attaining.

We recall the following.

Let X be a Banach space. If X is reflexive, then the closed unit ball
in X is sequentially compact in the weak topology.

Let X ,Y be Banach spaces and T : X → Y be compact. If xn → x
weakly, then Txn → Tx strongly.

P. Sam Johnson Norm-Attaining Operators 22/39



Exercises

Definition 12.

An operator S ∈ B(H,K ) is called an isometry if ‖Sx‖ = ‖x‖ for all
x ∈ H.

Exercise 13.

Identity operator is norm-attaining.

Every isometry is norm-attaining.
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NA(H ,K ) does not form a vector space.

Example 14.

Let {en} be a an orthonormal basis in `2. Let {an} and {bn} be sequences
of real numbers such that

1. 0 < a1 < a2 < . . . ;

2. an → a, for some a ∈ (0, 1] ;

3. a2n + b2n = 1.

Let T be the unitary operator given by

Ten = (an + ibn)en, n = 1, 2, 3, . . . .

Then (T + I ) is not norm-attaining.

Here ‖T + I‖ = 2
√

1 + a and ‖(T + I )x‖ < ‖T + I‖ for any x ∈ SX .
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Properties of norm-attaining operators

Theorem 15 ([1]).

1. Let T ∈ B(H) be self-adjoint. Then T ∈ NA(H) iff ‖T‖ or −‖T‖ is
an eigen value of T .

2. Let T ∈ B(H) be a positive operator. Then T ∈ NA(H) iff ‖T‖ is an
eigen value of T .

3. Let H and K be complex Hilbert spaces and T ∈ B(H,K ). Then
T ∈ NA(H) iff T ∗T ∈ NA(H).
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Properties of norm-attaining operators

Definition 16.

An operator P ∈ B(H) is called positive if 〈Px , x〉 ≥ 0, for all x ∈ H.

Given an operator T ∈ B(H,K ), we denote by PT , the unique operator
called the positive square root of T ∗T , that is, 〈PT x , x〉 ≥ 0, for all
x ∈ H and P2

T = T ∗T .

Theorem 17.

1. Let T ∈ B(H,K ). Then T ∈ NA(H) iff PT ∈ NA(H).

2. Let T ∈ B(H,K ). Then T ∈ NA(H,K ) iff T ∗ ∈ NA(K ,H).

3. Let T ∈ NA(H,K ). If there exists x0 ∈ S such that ‖Tx0‖ = ‖T‖,
then T (s⊥0 ) ⊆ (Tx0)⊥ (span{x0} reduces T ).
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Properties of norm-attaining operators

Theorem 18 ([3]).

Let H and K be complex Hilbert spaces and T ∈ B(H,K ). The following
are equivalent :

1. T ∈ NA(H,K ).

2. T ∗ ∈ NA(H,K ).

3. ‖|T‖| is an eigenvalue of |T | :=
√
T ∗T .

4. ‖T‖ is an eigenvalue of |T |.
5. |T | ∈ NA(H,K ).

6. |T ∗| ∈ NA(H,K ).

7. |T |2 is norm-attaining.

8. |T ∗|2 is norm-attaining.

9. ‖T‖ is an eigenvalue of |T ∗|.
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Operators that attain their minima

The study of bounded linear operators that attain their minima have some
similarities with the ones that achieve their norm.

We now discuss results on operators that attain their minima. In order to
have some common notations, let us call that the operator T satisfies
the property N when it is a norm-attaining operator.

Let H and K be Hilbert spaces. The space B(H,K ) is a Banach space
with the norm

‖T‖ = sup
‖x‖≤1

‖Tx‖ = sup
‖x‖=1

‖Tx‖.
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Operators that attain their minima

Analogous to norm-attaining operators, we now define the following value

[T ] = inf
‖x‖=1

‖Tx‖

and ask when such an infimum is a minimum, which motivates the
following definition.

Definition 19 ([2]).

An operator T ∈ B(H,K ) is called to satisfy the property N∗ if there
exists an element x0 in the unit sphere such that

[T ] = ‖Tx0‖.
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Important characteristics of the N∗-operators

Exercise 20.

1. If T is non-injective, then T attains its minimum and further [T ] = 0.

2. An operator with zero minimum on the unit sphere should be
non-injective in order to satisfy the property N∗. Equivalently, if T is
injective and satisfies the property N∗, then [T ] > 0.

3. Let T ∈ B(H,K ) with dimH∞. Then T satisfies the property N∗.
Moreover,

(a) if dimR(T ) = dim H, then [T ] > 0 ;
(b) if dimR(T ) < dim H, then [T ] = 0.

4. Let T ∈ B(H,K ), with dim H <∞ or dimK <∞, then T satisfies
the property N∗.
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Complete characterization of N∗ for non-injective compact
operators

We have the complete characterization of the property N∗ for
non-injective compact operators. It is observed that injectiveness is an
important property with respect to the property N∗.

Theorem 21.

Let T ∈ B(H,K ) be a compact operator with dimH =∞. Then T
satisfies N∗ iff T is non-injective.
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Important characteristics of the N∗-operators

Theorem 22.

1. If T is a self-adjoint operator on H, then for any x ∈ H we have

‖Tx‖2 ≥ [T ]〈Tx , x〉.

2. Let P ∈ B(H) be a positive operator. Then

[P] = inf
‖x‖=1

〈Px , x〉.
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Important characteristics of the N∗-operators

Give T ∈ B(H), it is well-known that

‖T‖ = sup
‖x‖=‖y‖=1

|〈Tx , y〉|.

But
[T ] = inf

‖x‖=‖y‖=1
|〈Tx , y〉|

is not true, which is illustrated in the following example.

Example 23.

Let T : `2 → `2 be defined by T (xn) = (λnxn) with λ1 > λ2 > · · · > λ > 0
and λn → λ. Then T ≥ 0 and T does not satisfy the property N∗. But

inf
‖x‖=‖y‖=1

|〈Tx , y〉| = 0.
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Important characteristics of the N∗-operators

Exercise 24.

1. If P ≥ 0 and [P] = ‖P‖, then P = [P]I .

2. If P ≥ 0, then Pn ≥ 0 and ‖Pn‖ = ‖P‖n for all n ≥ 1.

3. Let P ∈ B(H) be a positive operator. Then [Pn] = [P]n.

Similarly to the property N, we have the following.

Exercise 25.

Let P ∈ B(H) be a positive operator. Then P satisfies N∗ iff [P] is an
eigenvalue of P.
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An Example

The next example is an injective operator, which does not satisfy the N∗

property.

Example 26.

Consider T : `2 → `2 defined by T (xn) = (λnxn), where λ1 > λ2 > · · ·
and λ→ λ > 0. Here T is injective and T ≥ 0 but T does not satisfy the
N∗-property. Note that the numerical range of T is the interval (λ, λ1]
and [T ] = λ is not an extreme point of the numerical range.

P. Sam Johnson Norm-Attaining Operators 35/39



Examples

Given an operator T on H which satifies the N-condition, it is not
necessary true that T 2 also satisfies N. In a similar way, it may happen
that an operator satisfies N∗ but T 2 does not satisfy N∗.

Example 27.

Let T : `2 → `2 by T (x1, x2, . . .) = (λx2, 0, λ1x3, λ2x4, . . .).

1. If we choose 0 < λ1 < λ2 < · · · < λ and λn → λ, then T satisfies the
property N but T 2 does not satisfy the property N.

2. If we choose λ1 > λ2 > · · · > λ > 0 and λn → λ, then T satisfies the
property N∗ but T 2 does not satisfy the property N∗.

P. Sam Johnson Norm-Attaining Operators 36/39



Results on properties N and N∗

Theorem 28.

Let P ∈ B(H),P ≥ 0 and n be a positive integer.

1. P satisfies N iff Pn satisfies N.

2. P satisfies N∗ iff Pn satisfies N∗.

Theorem 29.

Let P ∈ B(H),P ≥ 0 and n, k be positive integers. Define

Tn = ‖P‖nI − Pn, T̃n = Pn − [P]nI .

1. P satisfies N∗ iff T n satisfies N iff T k
n satisfies N.

2. P satisfies N iff T̃ n∗ satisfies N∗ iff (T ∗n )k satisfies N∗.

P. Sam Johnson Norm-Attaining Operators 37/39



Recent research

Operators (compact / non-compact) which cannot be approximated
by norm-attaining ones (counterexamples)

AN operators (spectral decomposition, structure theorem)

AN ∗ operators
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